Effect of zirconia substructure thickness on the mechanical properties and adhesion of veneering porcelain

  • Daniel Lungareze
  • Giovanni Cunha
  • Eduardo Mariscal Muñoz
  • Renata Garcia Fonseca
  • Gelson Adabo


Aim: This study investigated the influence of yttrium-stabilized tetragonal zirconia polycrystals (Y-TZP) thickness on fracture load of porcelain-veneered crowns (FL), fracture toughness of porcelain (FT), and the shear bond strength zirconia/porcelain (SBS). Methods: Artificial first molar was prepared for full crown (N=45) with different occlusal reduction. Y-TZP cores were made with different thickness at the occlusal face (1mm, 2mm and 3mm) (n=15). The cores were veneered with VM9 – Vita porcelain with 1.0 mm layer. For FL testing, axial load was applied to the mesiolingual cusp of the crowns. For FT testing, flat Y-TZP plates (5X5 mm) with 1, 2 or 3 mm thickness were veneered with 1.0 mm porcelain layer (n=10). FT by indentation fracture technique was measured close to the interface and at the top surface. For SBS by knife-edge shearing rod, cylindrical porcelain with 5 mm in diameter and 3 mm was applied on flat Y-TZP plates (1, 2 and 3 mm thickness) (n = 10). Results: Data analyzed by 1-Way ANOVA for FL of crowns and SBS between Y-TZP and porcelain were not significant. Two-way ANOVA for FT was significant for zirconia thickness and measurement area. The post-hoc test showed higher values for the groups with 2 and 3mm, and higher values at the interface, irrespectively of Y-TZP thickness. Conclusion: The zirconia thickness did not affect the FL of veneered crowns and the SBS between the ceramics, but FT of porcelain was lower in thinner zirconia substructure and close to the interface Y-TZP/Porcelain.


1. Ortorp A, Kihl ML, Carlsson GE. A 5-year retrospective study of survival of zirconia single crowns fitted in a private clinical setting. J Dent. 2012;40(6):527-30. doi:10.1016/j.jdent.2012.02.011.
2. Raigrodski AJ, Yu A, Chiche GJ, Hochstedler JL, Mancl L a, Mohamed SE. Clinical efficacy of veneered zirconium dioxide-based posterior partial fixed dental prostheses: five-year results. J Prosthet Dent. 2012;108(4):214-22. doi:10.1016/S0022-3913(12)60165-6.
3. Rekow ED, Silva NRF a, Coelho PG, Zhang Y, Guess P, Thompson VP. Performance of dental ceramics: challenges for improvements. J Dent Res. 2011;90(8):937-52. doi:10.1177/0022034510391795.
4. Rinke S, Schäfer S, Lange K, Gersdorff N, Roediger M. Practice-based clinical evaluation of metal-ceramic and zirconia molar crowns: 3-year results. J Oral Rehabil. 2013;40(3):228-37. doi:10.1111/joor.12018.
5. Sorrentino R, De Simone G, Tetè S, Russo S, Zarone F. Five-year prospective clinical study of posterior three-unit zirconia-based fixed dental prostheses. Clin Oral Investig. 2012;16(3):977-85. doi:10.1007/s00784-011-0575-2.
6. Heintze SD, Rousson V. Survival of Zirconia- and Metal-Supported Fixed Dental Prostheses: A Systematic Review. Int J Prosthodont 2010;23(6):493-503.
7. Sailer I, Gauckler LJ. Five-Year Clinical Results of Zirconia Frameworks for. Int J Prosthodont 2007;20(4):383-389.
8. Guess PC, Bonfante E a, Silva NRF a, Coelho PG, Thompson VP. Effect of core design and veneering technique on damage and reliability of Y-TZP-supported crowns. Dent Mater. 2013;29(3):307-16. doi:10.1016/j.dental.2012.11.012.
9. Benetti P, Pelogia F, Valandro LF, Bottino MA, Bona A Della. The effect of porcelain thickness and surface liner application on the fracture behavior of a ceramic system. Dent Mater. 2011;27(9):948-53. doi:10.1016/j.dental.2011.05.009.
10. Alhasanyah A, Vaidyanathan TK, Flinton RJ. Effect of core thickness differences on post-fatigue indentation fracture resistance of veneered zirconia crowns. J Prosthodont. 2013;22(5):383-90. doi:10.1111/jopr.12016.
11. Hsueh CH, Thompson GA, Jadaan OM, Wereszczak AA, Becher PF. Analyses of layer-thickness effects in bilayered dental ceramics subjected to thermal stresses and ring-on-ring tests. Dent Mater. 2008;24(1):9-17. doi:10.1016/j.dental.2006.12.009.
12. Wakabayashi N, Anusavice KJ. Crack Initiation Modes in Bilayered Alumina/Porcelain Disks as a Function of Core/Veneer Thickness Ratio and Supporting Substrate Stiffness. J Dent Res. 2000;79(6):1398-1404. doi:10.1177/00220345000790060801.
13. Cho HY, Won HY, Choe HC, Son MK. Fracture Characteristics of Dental Ceramic Crown according to Zirconia Coping Design. Procedia Eng. 2011;10:1561-1566. doi:10.1016/j.proeng.2011.04.261.
14. Kim JH, Park JH, Park YB, Moon HS. Fracture load of zirconia crowns according to the thickness and marginal design of coping. J Prosthet Dent. 2012;108(2):96-101. doi:10.1016/S0022-3913(12)60114-0.
15. Silva NRF, Rafferty BT, Zavanelli RA, et al. Conventional and Modified Veneered Zirconia vs . Metalloceramic : Fatigue and Finite Element Analysis. J. Prosthodont. 2012;21(6):433-39. doi:10.1111/j.1532-849X.2012.00861.x.
16. Preis V, Letsch C, Handel G, Behr M, Schneider-Feyrer S, Rosentritt M. Influence of substructure design, veneer application technique, and firing regime on the in vitro performance of molar zirconia crowns. Dent Mater. 2013;29(7):e113-21. doi:10.1016/j.dental.2013.04.011.
17. Bonfante E a, Rafferty BT, Silva NRF a, et al. Residual thermal stress simulation in three-dimensional molar crown systems: a finite element analysis. J Prosthodont. 2012;21(7):529-34. doi:10.1111/j.1532-849X.2012.00866.x.
18. Meira JBC, Reis BR, Tanaka CB, et al. Residual stresses in Y-TZP crowns due to changes in the thermal contraction coefficient of veneers. Dent Mater. 2013;29(5):594-601. doi:10.1016/j.dental.2013.03.012.
19. Belli R, Frankenberger R, Appelt A, et al. Thermal-induced residual stresses affect the lifetime of zirconia – veneer crowns. Dent Mater. 2012:1-10. doi:10.1016/j.dental.2012.11.015.
20. Swain M V. Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures. Acta Biomater. 2009;5(5):1668-77. doi:10.1016/j.actbio.2008.12.016.
21. Tan JP, Sederstrom D, Polansky JR, McLaren E a, White SN. The use of slow heating and slow cooling regimens to strengthen porcelain fused to zirconia. J Prosthet Dent. 2012;107(3):163-9. doi:10.1016/S0022-3913(12)60050-X.
22. Tholey MJ, Swain M V, Thiel N. Thermal gradients and residual stresses in veneered Y-TZP frameworks. Dent Mater. 2011;27(11):1102-10. doi:10.1016/j.dental.2011.08.001.
23. Guazzato M, Walton TR, Franklin W, Davis G, Bohl C, Klineberg I. Influence of thickness and cooling rate on development of spontaneous cracks in porcelain/zirconia structures. Aust Dent J. 2010;55(3):306-10. doi:10.1111/j.1834-7819.2010.01239.x.
24. Mainjot AK, Schajer GS, Vanheusden AJ, Sadoun MJ. Influence of zirconia framework thickness on residual stress profile in veneering ceramic: measurement by hole-drilling. Dent Mater. 2012;28(4):378-84. doi:10.1016/j.dental.2011.11.009.
25. Göstemeyer G, Jendras M, Dittmer MP, Bach F-W, Stiesch M, Kohorst P. Influence of cooling rate on zirconia/veneer interfacial adhesion. Acta Biomater. 2010;6(12):4532-8. doi:10.1016/j.actbio.2010.06.026.
26. Koenig V, Vanheusden AJ, Le Goff SO, Mainjot AK. Clinical risk factors related to failures with zirconia-based restorations: an up to 9-year retrospective study. J Dent. 2013 Dec;41(12):1164-74. doi: 10.1016/j.jdent.2013.10.009. Epub 2013 Oct 14.
27. Fischer J, Stawarczyk B, Hämmerle CH. Flexural strength of veneering ceramics for zirconia. J Dent. 2008 May;36(5):316-21. doi: 10.1016/j.jdent.2008.01.017. Epub 2008 Mar 14.
How to Cite
LUNGAREZE, Daniel et al. Effect of zirconia substructure thickness on the mechanical properties and adhesion of veneering porcelain. Brazilian Journal of Oral Sciences, [S.l.], v. 18, p. e190919, apr. 2019. ISSN 1677-3225. Available at: <https://www.fop.unicamp.br/bjos/index.php/bjos/article/view/1530>. Date accessed: 21 july 2019. doi: https://doi.org/10.20396/bjos.v18i0.8655139.
Original Research