Effect of Modified 45s5 Bioglass on Physical and Chemical Properties of Bleached Enamel

  • Mahshid Saffarpour
  • Bahareh Asgartooran
  • Mohammad reza Tahriri
  • Maryam Mohammadi Savadroudbari
  • Mehdi Khabazkhoob

Abstract

Aim: The purpose of this study was to evaluate of the effects of modified 45S5 bioglass (BG) before, after, and during the bleaching procedure with 35% hydrogen peroxide (HP) on the tooth colour change and physicochemical and morphological properties of human enamel. Methods: Forty-two human premolar enamel samples were prepared and randomly divided into six groups as G1: control (deionized distilled water for 20 min), G2: BG (Bioglass suspension for 20 min), G3: HP (hydrogen peroxide 35% for 20 min), G4: BG before HP (Bioglass suspension for 20 min followed by hydrogen peroxide 35%) , G5: BG after HP (hydrogen peroxide 35% followed by Bioglass suspension for 20 min), and G6: BG during HP (Bioglass in hydrogen peroxide 35% suspension for 20 min). The treatment procedure was performed on the whole enamel surface. Colorimetry was done before and after the treatment procedure. Two specimens from each group were selected for morphological analysis with scanning electron microscope (SEM). Microhardness analysis was performed after the treatment procedure and chemical analysis of BG dissolution was done for BG+DDW and BG+HP suspensions. Results: No statistically significant difference in colour was observed among different groups (P= 0.073133) and the yellowness index decreased in all of the four HP groups. The greatest reduction in microhardness occurred in groups HP and BG before HP (P<0.001) while the BG group showed increased microhardness measurements (P<0.001). Statically significant differences in microhardness were found among the groups. Elemental analysis showed significantly increased levels of Ca and P in BG after HP and BG before HP groups when compared to the HP group. Ionic release of BG was significantly greater in HP when compared to DDW. Conclusion: Using BG before HP had a greater protective effect since it increased microhardness more effectively, decreased mineral loss, and retained the integrity of the enamel surface. The HP group had the lowest microhardness and BG during HP showed less protective effects compared to BG before HP.

References

1. Deng M, Wen HL, Dong XL, Li F, Xu X, Li H, et al. Effects of 45S5 bioglass on surface properties of dental enamel subjected to 35% hydrogen peroxide. Int J Oral Sci 2013;5:103-10.
2. Jiang T, Ma X, Wang Y, Tong H, Shen X, Hu Y, et al. Investigation of the effects of 30% hydrogen peroxide on human tooth enamel by Raman scattering and laser-induced fluorescence. J Biomed Opt 2008;13:014019.
3. Gjorgievska E, Nicholson JW. Prevention of enamel demineralization after tooth bleaching by bioactive glass incorporated into toothpaste. Aust Dent J 2011;56:193-200.
4. Cobankara FK, Unlu N, Altinoz HC, Fusun O. Effect of home bleaching agents on the roughness and surface morphology of human enamel and dentine. Int Dent J 2004;54:211-8.
5. Taha AA, Patel MP, Hill RG, Fleming PS. The effect of bioactive glasses on enamel remineralization: A systematic review. J Dent 2017;67:9-17.
6. Young- Hee Park A-Nc. Effects of Bioactive Glass on Microhardness of Bleached Enamel Surface. Korean J Dent Mater 2018 45:1-10.
7. Attin T, Vollmer D, Wiegand A, Attin R, Betke H. Subsurface microhardness of enamel and dentin after different external bleaching procedures. Am J Dent 2005;18:8-12.
8. Rehder Neto FC, Maeda FA, Turssi CP, Serra MC. Potential agents to control enamel caries-like lesions. J Dent 2009;37:786-90.
9. Burwell AK, Litkowski LJ, Greenspan DC. Calcium sodium phosphosilicate (NovaMin): remineralization potential. Adv Dent Res 2009;21:35-9.
10. Andersson OH, Kangasniemi I. Calcium phosphate formation at the surface of bioactive glass in vitro. J Biomed Mater Res 1991;25:1019-30.
11. Fredholm YC, Karpukhina N, Brauer DS, Jones JR, Law RV, Hill RG. Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation. J R Soc Interface 2012;9:880-9.
12. Fredholm YC, Karpukhina N, Brauer DS, Jones JR, Law RV, Hill RG. Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation. Journal of The Royal Society Interface 2012;9:880-9.
13. Tai BJ, Bian Z, Jiang H, Greenspan DC, Zhong J, Clark AE, et al. Anti-gingivitis effect of a dentifrice containing bioactive glass (NovaMin) particulate. J Clin Periodontol 2006;33:86-91.
14. Du Min Q, Bian Z, Jiang H, Greenspan DC, Burwell AK, Zhong J, et al. Clinical evaluation of a dentifrice containing calcium sodium phosphosilicate (novamin) for the treatment of dentin hypersensitivity. Am J Dent 2008;21:210-4.
15. Athanassouli TM, Papastathopoulos DS, Apostolopoulos AX. Dental caries and strontium concentration in drinking water and surface enamel. J Dent Res 1983;62:989-91.
16. Thuy TT, Nakagaki H, Kato K, Hung PA, Inukai J, Tsuboi S, et al. Effect of strontium in combination with fluoride on enamel remineralization in vitro. Arch Oral Biol 2008;53:1017-22.
17. Joiner A. The bleaching of teeth: a review of the literature. J Dent 2006;34:412-9.
18. Paul S, Peter A, Pietrobon N, Hammerle CH. Visual and spectrophotometric shade analysis of human teeth. J Dent Res 2002;81:578-82.
19. Jiang T, Ma X, Wang Z, Tong H, Hu J, Wang Y. Beneficial effects of hydroxyapatite on enamel subjected to 30% hydrogen peroxide. J Dent 2008;36:907-14.
20. Josey AL, Meyers IA, Romaniuk K, Symons AL. The effect of a vital bleaching technique on enamel surface morphology and the bonding of composite resin to enamel. J Oral Rehabil 1996;23:244-50.
21. Soldani P, Amaral CM, Rodrigues JA. Microhardness evaluation of in situ vital bleaching and thickening agents on human dental enamel. Int J Periodontics Restorative Dent 2010;30:203-11.
22. Xu B, Li Q, Wang Y. Effects of pH values of hydrogen peroxide bleaching agents on enamel surface properties. Oper Dent 2011;36:554-62.
23. Curtis AR, West NX, Su B. Synthesis of nanobioglass and formation of apatite rods to occlude exposed dentine tubules and eliminate hypersensitivity. Acta Biomater 2010;6:3740-6.
24. Park Y KS. Effects of Bioactive Glass on Microhardness and Morphological Changes of Bleached Enamel Surface. 2017.
25. L. H. Mechanical behaviour of human enamel and the relationship to its structural and compositional characteristics. 2008.
Published
2019-04-05
How to Cite
SAFFARPOUR, Mahshid et al. Effect of Modified 45s5 Bioglass on Physical and Chemical Properties of Bleached Enamel. Brazilian Journal of Oral Sciences, [S.l.], v. 18, p. e191424, apr. 2019. ISSN 1677-3225. Available at: <https://www.fop.unicamp.br/bjos/index.php/bjos/article/view/1537>. Date accessed: 21 july 2019. doi: https://doi.org/10.20396/bjos.v18i0.8655314.
Section
Original Research

Most read articles by the same author(s)