Influence of furnace type in the crystallization of lithium disilicate on bond strength and flexural strength

  • Karla Zancope
  • Thácio de Castro
  • Lucas do Nascimento Tavares
  • Marcel Santana Prudente
  • Flávio Domingues das Neves


Aim: The crystallization step is required for lithium disilicate ceramics to change color, improve the mechanical properties and yield material to support mouth loading. Several furnaces could complete the crystallization process. This study evaluated the flexural and bond strength of lithium disilicate ceramics
crystallized by different furnaces with the presence or not of vacum and different holding time. Methods: Forty lithium disilicate samples were divided into two groups: Programat P300 - control group with vacuum and holding time 7 minutes (CG) and FVPlus- experimental group and without vacuum and holding
time 25 minutes (EG) and submitted to 2 experimental tests: 3-point flexural strength test and micro shear bond strength test (μSBS). For this test, the surface of the samples was treated and 1mm² of resin cement was applied on the surface. The samples were stored in artificial saliva over 2 time periods (24 hours: T0;
1-month storage: T1). To analyze the morphologic crystals of the ceramics tested, one representative specimen from each group were analyzed by using Scanning Electron Microscopy (SEM). Results: There was no significant difference in 3-point flexural strength test between groups CG and EG (p= 0.984). The μSBS results showed no statistical difference between groups, considering different storage time. There was no difference in the 3-point flexural strength and μSBS for lithium disilicate samples regardless of heat treatment of furnace type. The storage time had no influence on the μSBS. No differences were noted in the shape and size of these crystals when comparing the furnace analyzed by SEM images. Conclusion: Different furnaces did not influence the flexural and bond strength of lithium disilicate ceramics.


1. Pjetursson BE, Sailer I, Zwahlen M, Hämmerle CH. A systematic review of the survival and
complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of
at least 3 years. Part I: Single crowns. Clin Oral Implants Res. 2007;18 Suppl 3:73-85. Review. Erratum
in: Clin Oral Implants Res. 2008;19(3):326-8.
2. Pagani C, Miranda CB, Bottino MC. Relative fracture toughness of different dental ceramics. J Appl
Oral Sci. 2003;11(1):69-75.
3. Della Bona A, Kelly JR. The clinical success of all-ceramic restorations. J Am Dent Assoc. 2008;139
4. Fasbinder DJ, Dennison JB, Heys D, Neiva G. A clinical evaluation of chairside lithium disilicate
CAD/CAM crowns: a two-year report. J Am Dent Assoc. 2010;141 Suppl 2:10S-4S.
5. Sorensen JA, Cruz M, Mito WT, Raffeiner O, Meredith HR, Foser HP. A clinical investigation on
three-unit fixed partial dentures fabricated with a lithium disilicate glass-ceramic. Pract Periodontics
Aesthet Dent. 1999;11(1):95-106; quiz 108.
6. Kheradmandan S, Koutayas SO, Bernhard M, Strub JR. Fracture strength of four different types of
anterior 3-unit bridges after thermo-mechanical fatigue in the dual-axis chewing simulator. J Oral
Rehabil. 2001;28(4):361-9.
7. Reich S, Schierz O. Chair-side generated posterior lithium disilicate crowns after 4 years. Clin Oral
Investig. 2013;17(7):1765-72. doi: 10.1007/s00784-012-0868-0.
8. Pieger S, Salman A, Bidra AS. Clinical outcomes of lithium disilicate single crowns and
partial fixed dental prostheses: a systematic review. J Prosthet Dent. 2014;112(1):22-30.
doi: 10.1016/j.prosdent.2014.01.005.
9. Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic
and ceramic-like restorative materials. Int J Prosthodont. 2015;28(3):227-35. doi: 10.11607/ijp.4244.
10. Lin WS, Ercoli C, Feng C, Morton D. The effect of core material, veneering porcelain, and fabrication
technique on the biaxial flexural strength and Weibull analysis of selected dental ceramics.
J Prosthodont. 2012;21(5):353-62. doi: 10.1111/j.1532-849X.2012.00845.x.
11. Neves FD, Prado CJ, Prudente MS, Carneiro TA, Zancopé K, Davi LR, et al. Micro-computed
tomography evaluation of marginal fit of lithium disilicate crowns fabricated by using chairside
CAD/CAM systems or the heat-pressing technique. J Prosthet Dent. 2014;112(5):1134-40.
doi: 10.1016/j.prosdent.2014.04.028.
12. Ritter RG. Multifunctional uses of a novel ceramic-lithium disilicate. J Esthet Restor Dent.
2010;22(5):332-41. doi: 10.1111/j.1708-8240.2010.00362.x.
13. McLaren EA, Figueira J. Updating Classifications of Ceramic Dental Materials: A Guide to Material
Selection. Compend Contin Educ Dent. 2015;36(6):400-5; quiz 406, 416.
14. Borom MP, Turkalo AM, Doremus RH. Strength and microstructure in lithium disilicate glass-ceramics.
J Amer Ceram Soc. 1975;58(9-10):385-91.
15. Höland W, Apel E, van ‘t Hoen C, Rheinberger V. Studies of crystal phase formations
in high-strength lithium disilicate glass–ceramics. J Non-Cry Sol. 2006;352(15):38-9.
16. Rekow ED, Silva NR, Coelho PG, Zhang Y, Guess P, Thompson VP. Performance of dental ceramics:
challenges for improvements. J Dent Res. 2011;90(8):937-52. doi: 10.1177/0022034510391795.
17. Lien W, Roberts HW, Platt JA, Vandewalle KS, Hill TJ, Chu TM. Microstructural evolution
and physical behavior of a lithium disilicate glass-ceramic. Dent Mater. 2015;31(8):928-40.
doi: 10.1016/
18. Lise DP, Perdigão J, Van Ende A, Zidan O, Lopes GC. Microshear Bond Strength of Resin Cements to
Lithium Disilicate Substrates as a Function of Surface Preparation. Oper Dent. 2015;40(5):524-32.
doi: 10.2341/14-240-L.
19. Tian T, Tsoi JK, Matinlinna JP, Burrow MF. Aspects of bonding between resin luting cements and
glass ceramic materials. Dent Mater. 2014;30(7):e147-62. doi: 10.1016/
20. Neis CA, Albuquerque NL, Albuquerque Ide S, Gomes EA, Souza-Filho CB, Feitosa VP, et al. Surface
treatments for repair of feldspathic, leucite - and lithium disilicate-reinforced glass ceramics using
composite resin. Braz Dent J. 2015;26(2):152-5. doi: 10.1590/0103-6440201302447.
21. Zogheib LV, Bona AD, Kimpara ET, McCabe JF. Effect of hydrofluoric acid etching duration on
the roughness and flexural strength of a lithium disilicate-based glass ceramic. Braz Dent J.
22. Della Bona A, Anusavice KJ, Mecholsky JJ Jr. Failure analysis of resin composite bonded to ceramic.
Dent Mater. 2003;19(8):693-9.
23. Della Bona A, Anusavice KJ, Shen C. Microtensile strength of composite bonded to hot-pressed
ceramics. J Adhes Dent. 2000;2(4):305-13.
24. Raposo LH, Armstrong SR, Maia RR, Qian F, Geraldeli S, Soares CJ. Effect of specimen
gripping device, geometry and fixation method on microtensile bond strength, failure mode
and stress distribution: laboratory and finite element analyses. Dent Mater. 2012;28(5):e50-62.
doi: 10.1016/
25. Wegner SM, Gerdes W, Kern M. Effect of different artificial aging conditions on ceramic-composite
bond strength. Int J Prosthodont. 2002;15(3):267-72.
26. Nawafleh N, Hatamleh M, Elshiyab S, Mack F. Lithium Disilicate Restorations Fatigue Testing
Parameters: A Systematic Review. J Prosthodont. 2016;25(2):116-26. doi: 10.1111/jopr.12376.
27. Armstrong S, Geraldeli S, Maia R, Raposo LH, Soares CJ, Yamagawa J. Adhesion to tooth
structure: a critical review of “micro” bond strength test methods. Dent Mater. 2010;26(2):e50-62.
doi: 10.1016/
28. Moharamzadeh K, Hooshmand T, Keshvad A, Van Noort R. Fracture toughness of a ceramic-resin
interface. Dent Mater. 2008;24(2):172-7.
29. Hooshmand T, Rostami G, Behroozibakhsh M, Fatemi M, Keshvad A, van Noort R. Interfacial
fracture toughness of different resin cements bonded to a lithium disilicate glass ceramic. J Dent.
2012;40(2):139-45. doi: 10.1016/j.jdent.2011.12.005.
30. Jin J, Takahashi H, Iwasaki N. Effect of test method on flexural strength of recent dental ceramics.
Dent Mater J. 2004;23(4):490-6.
31. Yen TW, Blackman RB, Baez RJ. Effect of acid etching on the flexural strength of a feldspathic
porcelain and a castable glass ceramic. J Prosthet Dent. 1993;70(3):224-33.
32. Albero A, Pascual A, Camps I, Grau-Benitez M. Comparative characterization of a novel cad-cam
polymer-infiltrated-ceramic-network. J Clin Exp Dent. 2015;7(4):e495-500. doi: 10.4317/jced.52521.
33. Phrukkanon S, Burrow MF, Tyas MJ. Effect of cross-sectional surface area on bond strengths
between resin and dentin. Dent Mater. 1998;14(2):120-8.
How to Cite
ZANCOPE, Karla et al. Influence of furnace type in the crystallization of lithium disilicate on bond strength and flexural strength. Brazilian Journal of Oral Sciences, [S.l.], v. 18, p. e191405, may 2019. ISSN 1677-3225. Available at: <>. Date accessed: 21 july 2019. doi:
Original Research

Most read articles by the same author(s)