The effect of heat treatment on sliding mechanics of stainless steel orthodontic wires

  • Suzimara dos Reis Géa Osório
  • Agenor Osório
  • Flávia Lucisano Botelho do Amaral
  • Flávia Martão Flório

Abstract

Aim: The aim of this study was to evaluate the effect of heat treatment (tempering) on the sliding mechanics of stainless steel Chrome Nickel (CrNi) orthodontic wires. Methods: A universal testing machine EMIC DL 2000 was used at a speed of 10 mm/minute for reading-out the sliding strength and friction between brackets and wires, by simulating the sliding mechanics in a fixed orthodontic appliance. The results were submitted to ANOVA variance test for statistical analysis at the level of 5% (p<0.05). Results: The results indicated that depending on the type of bracket, wire and type of treatment, the groups without heat treatment showed higher mean static friction values, except for groups with CrNi GAC wire and conventional brackets, which showed no significant difference with and without heat treatment; and the group with self-ligated brackets and CrNi GAC wires that showed the lowest mean static friction values with heat treatment. Conclusion: The heat treatment reduced the static friction values on CrNi Morelli wires for any combination of brackets (conventional and self-ligated types) and commercial brands. For the CrNi GAC wires, there was a reduction in friction values only in the combination with In-Ovation R/GAC selfligated brackets.

References

1. Pacheco MR, Jansen WC, Oliveira DD. The role of friction in orthodontics. Dental Press J. Orthod.
2012 Mar-Apr;17(2):170-7.
2. Dolci GS, Spohr AM, Zimmer ER, Marchioro EM. Assessment of the dimensions of orthodontics wires
and bracket slots. Dental Press J Orthod. 2013 Mar-Apr;18(2):69-75.
3. Jakob SR, Matheus D, Jimenez-Pellegrin MC, Turssi CP, Amaral FLP. Comparative study of friction
between metallic and convention-al interactive self-ligating brackets in different alignment
conditions. Dental Press J Orthod. 2014 May-Jun;19(3):82-9.
4. Gómez SL, Montoya Y, Garcia NL, Virgen AL, Botero JE. Comparison of frictional resistance among
conventional, active and passive self-ligating brackets with different combinations of arch wires: a
finite elements study. Acta Odontol Latinoam. 2016;29(2):130-6.
5. Martins Neto EN, Sobreiro MA, Araujo EX, Molina OF. [Self-ligating brackets: advantages of low
friction]. Amazônia: Sci Health. 2014;2(1):27-33. Portuguese.
6. Pereira GO, Gimenez CMM, Prieto L, Prieto MGDL, Basting RT. Influence of ligation method on friction
resistance of lingual brackets with different second-order angulations: an in vitro study. Dental Press
J Orthod. 2016 Jul-Aug;21(4):34-40.
7. Fleming PS, Lee RT, Marinho V, Johal A. Comparison of maxillary arch dimensional changes
with passive and active self-ligation and conventional brackets in the permanent dentition: A
multicenter, randomized controlled trial. Am J Orthod Dentofacial Orthop. 2013 Aug;144(2):185-93.
doi: 10.1016/j.ajodo.2013.03.012.
8. Arteche, P, Oberti G, Aristizabal JF, Sierra A, Rey D. Important considerations of orthodontics with
self-ligating brackets versus conventional ligation. Rev Esp Ortod. 2015;45(2):93-100.
9. Vinay K, Venkatesh MJ, Nayak RS, Pasha A, Rajesh M, Kumar P. A comparative study to evaluate the
effects of ligation methods on friction in sliding mechanics using 0.022” slot brackets in dry state: An
In-vitro study. J Int Oral Health. 2014 Apr;6(2):76-83.
10. Macena MCB, Catão CDS, Rodrigues RQF, Vieira JMF. Orthodontic wires, microstructural properties
and clinical applicability: a general vision. Rev Saude Cien Online. 2015;4(2):90-108.
11. Eliades T. Orthodontic material applications over the past century: evolution of research methods
to address clinical queries. Am J Orthod Dentofacial Orthop. 2015 May;147(5 Suppl):S224-31.
doi: 10.1016/j.ajodo.2015.03.007.
12. McLaughlina RP, Bennettb JC. Evolution of treatment mechanics and contemporary appliance design
in orthodontics: a 40-year perspective. Am J Orthod Dentofacial Orthop. 2015 Jun;147(6):654-62.
doi: 10.1016/j.ajodo.2015.03.012.
13. Cuoghi OA, Kasbergen GF, Santos PH, Mendonça MR, Tondelli PM. Effect of heat treatment on
stainless steel orthodontic wires. Braz Oral Res. 2011 Mar-Apr;25(2):128-34.
14. Canales C, Larson M, Grauer D, Sheats R, Stevens C, Koe CC. A novel biomechanical model assessing
continuous orthodontic wire activation. Am J Orthod Dentofacial Orthop. 2013 Feb;143(2):281-90.
doi: 10.1016/j.ajodo.2012.06.019.
15. Amini F, Rakhshan V, Pousti M, Rahimi H, Shariati M, Aghamohamadi B. Variations in surface
roughness of seven orthodontic wires: an SEM-profilometry study. Korean J Orthod. 2012
Jun;42(3):129-37. doi: 10.4041/kjod.2012.42.3.129.
16. Ruela ACO, Nelson CE, Biasi RS, Chevitarese O. [Heat-treatment in parabolas of stainless steel wires:
phase transformation and transverse dimensional alteration]. Rev CROMG. 1999 Sep-Dec;5(3):136-9.
Portuguese.
17. Gjerdet NR, Hero H. Metal release from heat-treated orthodontic wires. Acta Odontol Scand. 1987
Dec;45(6):409-14.
18. Rodrigues HS, Quintão CCA, Vitral RWF. [The importance of heat treatment in the performance of
stainless steel wires]. Ortod Gaucha. 2004 Jan-Jun;8(1):67-77. Portuguese.
19. Oh KT, Kim KN. Ion release and cytotoxicity of stainless steel wires. Eur J Orthod. 2005 Dec;27(6):533-40.
20. Backofen WA, Gales GF. The low temperature heat-treatment of stainless steed for orthodontics.
Angle Orthod. 1951 Apr;21(2):117-24.
21. Elias CN, De Biasi RS, Chevitarese O. [Influence of heat treatment on the flow limit of orthodontic
wires]. Rev Bras Odontol. 1993 Jan-Feb;50(1):29-32. Portuguese.
22. Gurgel J, Pinzan V, Maio CR, Bramante FS; Neves MG. [Orthodontic wires: updated outlook]. Pro-
Odonto. Ortod. 2013;7(1):125-57.
23. Montasser MA, Keilig L, Bourauelc C. Arch diameter effect on tooth alignment with different
bracket-wire combinations. Am J Orthod Dentofacial Orthop. 2016 Jan;149(1):76-83.
doi: 10.1016/j.ajodo.2015.06.026.
24. Kusy RP, Greenberg AR. Effects of composition and cross section on the elastic properties of
orthodontic wires. Angle Orthod. 1981 Oct;51(4):325-41.
25. Di Nisio, FG. [Microstructural analysis of orthodontic wire]. In: Seminar on Scientific and
Technological Initiation. Curitiba: Federal Technological University of Paraná. 2012 Nov. Portuguese.
26. Eliades T. Dental materials in orthodontics. In: Graber LW, Vanarsdall RL, Vig KL, editors.
Orthodontics: current principles and techniques. Philadelphia: Elsevier; 2012.
27. Geremia JR, Oliveira PS, Motta RHL. [Comparison of friction among self-ligating brackets and
conventional brackets with different ligadures]. Orthod Sci Pract. 2015;8(29):30-7.
28. Ingerslev CH. Influence of heat treatment on the physical properties of bent orthodontic wire. Angle
Orthod. 1966 Jul;36(3):236-47.
29. Messner RS, Itman Filho A, Rubert JB. [Cold rolling orthodontic wires of austenitic stainless steel AISI
304]. Tecnol Metal Mater. 2013 Jan-Ma;10(1):57-63. doi: 10.4322/tmm.2013.008. Portuguese.
30. Anand M, Turpin DL, Jumani KS, Spiekerman CF, Huange GJ. Retrospective investigation of the
effects and efficiency of self-ligating and conventional brackets. Am J Orthod Dentofacial Orthop.
2015 Jul;148(1):67-75. doi: 10.1016/j.ajodo.2014.12.029.
31. Nobrega C, Motta F, Rodrigues LF, Janovich CA. [Evaluation of the biomechanical behavior of self
ligating interactive bracket’s clips: part 1]. Ortodontia. 2013 Nov-Dec;46(6):565-73. Portuguese.
Published
2019-06-11
How to Cite
OSÓRIO, Suzimara dos Reis Géa et al. The effect of heat treatment on sliding mechanics of stainless steel orthodontic wires. Brazilian Journal of Oral Sciences, [S.l.], v. 18, p. e190285, june 2019. ISSN 1677-3225. Available at: <https://www.fop.unicamp.br/bjos/index.php/bjos/article/view/1546>. Date accessed: 21 july 2019. doi: https://doi.org/10.20396/bjos.v18i0.8655464.
Section
Original Research

Most read articles by the same author(s)