Biological and mechanical degradation affecting the surface properties of aesthetic restorative

  • Bianca Medeiros Maran
  • Fabiana Scarparo Naufel
  • Andréia Bolzan de Paula
  • Giovana Spagnolo Albamonte Araújo
  • Regina Maria Puppin-Rontani

Abstract

Aim: To evaluate the roughness (Ra), Knoop hardness (KHN) and change of color (ΔE) of esthetic restorative materials (Filtek Z350-composite nanoparticle; Empress Direct-composite nanohybrid and IPS e.Max-ceramic)
subjected to contact with the Streptococcus mutans biofilm (biological degradation) associated with abrasion generated by tooth brushing (mechanical degradation). Methods: Ten specimens of each material were prepared, and the surface properties initial were evaluated. All specimens were exposed to Streptococcus mutans inoculum; after 7 days, surface properties were evaluated. The specimens were submitted to a 30,000 toothbrushing cycles, using a toothpaste slurry, then, surface properties were evaluated again. Data were
analyzed by Proc-Mixed, One-way ANOVA, Tukey-Kramer and Tukey’s tests (α = 0.05). Results: At the baseline, ceramic showed the highest Ra and KHN values; after the biological degradation the composites showed increased Ra, but KHN did not change; after the mechanical degradation, Empress showed decreased Ra and Z350 showed similar Ra, the KHN increased to both composites, and all materials had increased lightness after the mechanical degradation. Conclusions: The results suggest that, when exposed to Streptococcus  mutans biofilm and toothbrush abrasion, the ceramics undergoes minimal degradation and the composites exhibited variable
degradation, depending on the composition of the material.

References

1. Padovani G, Fucio S, Ambrosano G, Sinhoreti M, Puppin-Rontani R. In situ surface biodegradation of restorative materials. Oper Dent. 2014;39(4):349-60. doi: 10.2341/13-089-C. PubMed PMID: 24555699.
2. Srivastava N. A comparative evaluation of efficacy of different teaching methods of tooth brushing in children contributors. J Oral Hyg Health. 2013;01(03). doi: 10.4172/2332-0702.1000118.
3. da Silva MA, Fardin AB, de Vasconcellos RC, Santos Lde M, Tonholo J, da Silva JG, Jr., et al. Analysis of roughness and surface hardness of a dental composite using atomic force microscopy and microhardness testing. Microsc Microanal. 2011;17(3):446-51. doi: 10.1017/S1431927611000250. PubMed PMID: 21492501.
4. Da Silva E, de Sá Rodrigues C, Dias D, da Silva S, Amaral C, Guimarães J. Effect of toothbrushing-mouthrinse-cycling on surface roughness and topography of nanofilled, microfilled, and microhybrid resin composites. Oper Dent. 2014;39(5):521-9.
5. Barbosa RP, Pereira-Cenci T, Silva WM, Coelho-de-Souza FH, Demarco FF, Cenci MS. Effect of cariogenic biofilm challenge on the surface hardness of direct restorative materials in situ. J Dent. 2012;40(5):359-63. doi: 10.1016/j.jdent.2012.01.012. PubMed PMID: 22326721.
6. Wei Y-j, Silikas N, Zhang Z-t, Watts DC. Hygroscopic dimensional changes of self-adhering and new resin-matrix composites during water sorption/desorption cycles. Dent Mater. 2011;27(3):259-66.
7. Sarkis E. Color change of some aesthetic dental materials: Effect of immersion solutions and finishing of their surfaces. Saudi Dent J. 2012;24(2):85-9. doi: 10.1016/j.sdentj.2012.01.004.
8. Roselino Lde M, Cruvinel DR, Chinelatti MA, Pires-de-Souza Fde C. Effect of brushing and accelerated ageing on color stability and surface roughness of composites. J Dent. 2013;41 Suppl 5:e54-61. doi: 10.1016/j.jdent.2013.07.005.
9. Correa MB, Peres MA, Peres KG, Horta BL, Barros AD, Demarco FF. Amalgam or composite resin? Factors influencing the choice of restorative material. J Dent. 2012;40(9):703-10. doi: 10.1016/j.jdent.2012.04.020.
10. Anusavice K. Degradability of dental ceramics. Adv Dent Res. 1992;6(1):82-9.
11. Rosentritt M, Sawaljanow A, Behr M, Kolbeck C, Preis V. Effect of tooth brush abrasion and thermo-mechanical loading on direct and indirect veneer restorations. Clin Oral Investig. 2015;19(1):53-60.
12. Rashid H. The effect of surface roughness on ceramics used in dentistry: A review of literature. Eur J Dent. 2014;8(4):571.
13. Ferracane JL. Resin composite--state of the art. Dental materials : official publication of the Acad Dent Mater. 2011;27(1):29-38. doi: 10.1016/j.dental.2010.10.020.
14. Ozak ST, Ozkan P. Nanotechnology and dentistry. Eur J Dent. 2013;7(1):145-51.
15. De Fúcio S, de Paula AB, de Carvalho FG, Feitosa VP, Ambrosano G, Puppin-Rontani RM. Biomechanical degradation of the nano-filled resin-modified glass-ionomer surface. Am J Dent. 2012;25(6):315-20.
16. De Paula A, De Fúcio S, Alonso R, Ambrosano G, Puppin-Rontani R. Influence of chemical degradation on the surface properties of nano restorative materials. Oper Dent. 2014;39(3):E109-E17.
17. Smith R, Oliver C, Williams D. The enzymatic degradation of polymers in vitro. J Biomed Mater Res. 1987;21(8):991-1003.
18. Park J, Song C, Jung J, Ahn S, Ferracane J. The effects of surface roughness of composite resin on biofilm formation of Streptococcus mutans in the presence of saliva. Oper Dent. 2012;37(5):532-9.
19. Sarkar NK. Internal corrosion in dental composite wear. J Biomed Mater Res Part A. 2000;53(4):371-80.
20. Carvalho FG, Sampaio CS, Fucio SB, Carlo HL, Correr-Sobrinho L, Puppin-Rontani RM. Effect of chemical and mechanical degradation on surface roughness of three glass ionomers and a nanofilled resin composite. Oper Dent. 2012;37(5):509-17. doi: 10.2341/10-406-L.
21. Cornelio RB, Wikant A, Mjøsund H, Kopperud HM, Haasum J, Gedde UW, et al. The influence of bis-EMA vs bis GMA on the degree of conversion and water susceptibility of experimental composite materials. Acta Odontol Scand. 2014;72(6):440-7.
22. Castro HLd. Influence of brushing on a machined lithium disilicate-based ceramic: evaluation of maintenance of color and surface roughness. Rev Fac Odontol UPF. 2014;19(1). doi: 10.5335/rfo.v19i1.3634.
23. Garcia LF, Mundim FM, Pires-de-Souza FC, Puppin Rontani R, Consani S. Effect of artificial accelerated aging on the optical properties and monomeric conversion of composites used after expiration date. Gen Dent. 2013;61:1-5.
24. da Silva EM, Goncalves L, Guimaraes JG, Poskus LT, Fellows CE. The diffusion kinetics of a nanofilled and a midifilled resin composite immersed in distilled water, artificial saliva, and lactic acid. Clin Oral investig. 2011;15(3):393-401. doi: 10.1007/s00784-010-0392-z.
25. da Silva EM, Dória J, da Silva JdJR, Santos GV, Guimarães JGA, Poskus LT. Longitudinal evaluation of simulated toothbrushing on the roughness and optical stability of microfilled, microhybrid and nanofilled resin-based composites. J Dent. 2013;41(11):1081-90.
26. Alrahlah A, Silikas N, Watts DC. Post-cure depth of cure of bulk fill dental resin-composites. Dent Mater. 2014;30(2):149-54. doi: 10.1016/j.dental.2013.10.011.
27. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog Polymer Sci. 2013;38(8):1232-61. doi: 10.1016/j.progpolymsci.2013.02.003.
28. Oliveira DC, Souza-Junior EJ, Prieto LT, Coppini EK, Maia RR, Paulillo LA. Color stability and polymerization behavior of direct esthetic restorations. J Esthet Restorative Dent. 2014;26(4):288-95. doi: 10.1111/jerd.12113.
29. Prodan DA, Gasparik C, Mada DC, Miclăuş V, Băciuţ M, Dudea D. Influence of opacity on the color stability of a nanocomposite. Clin Oral Investig. 2015;19(4):867-75.
30. Tan B, Yap A, Ma H, Chew J, Tan W. Effect of beverages on color and translucency of new tooth-colored restoratives. Oper Dent. 2015;40(2):E56-E65.
Published
2017-11-13
How to Cite
MARAN, Bianca Medeiros et al. Biological and mechanical degradation affecting the surface properties of aesthetic restorative. Brazilian Journal of Oral Sciences, [S.l.], p. e17068, nov. 2017. ISSN 1677-3225. Available at: <https://www.fop.unicamp.br/bjos/index.php/bjos/article/view/175>. Date accessed: 20 july 2019. doi: https://doi.org/10.20396/bjos.v16i1.8651058.
Section
Original Research

Most read articles by the same author(s)