Root morphology can be a risk factor for periodontal damage and root resorption in orthodontic movement

  • Ewerton Zaniboni
  • Mário Vedovello Filho
  • Mauro Pedrine Santamaria
  • Maria Aparecida Neves Jardini
  • Maria Fernanda Martins-Ortiz
  • Alberto Consolaro
  • Milton Santamaria Jr

Abstract

Aim: The study evaluated, using histomorphometry, the percentage of hyaline area in periodontal  ligament  (PDL)  and root resorption in orthodontic tooth movement (OTM). Methods: Ten rats were divided into two groups. G3 Group (n=5), with 3 days of OTM and G7 Group (n=5), with 7 days of OTM. A Control Group (n=5) consisted of contralateral teeth of each animal, which were not moved. Maxillary left first molar was moved, using stainless steel spring connected to the incisors with 40g force. Microscopic analysis was done    in transversal sections of the mesiovestibular (MV) and distovestibular (DV) roots in the cervical level. Results: There was a PDL hyaline area in the DV root of 6.2% in G3 and 1.8% in G7. The root resorption area in G7 was 0.9%. On MV root and Control Group were not found occurrences of hyaline areas in PDL and no root resorption. Conclusions: Based on the results obtained, it might be concluded that smaller roots showed higher frequency of hyaline areas and root resorption.

References

1. Krishnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop. 2006 Apr;129(4):469.e1-32.
2. Cattaneo PM, Dalstra M, Melsen B. Strains in periodontal ligament and alveolar bone associated with orthodontic tooth movement analyzed by finite element. Orthod Craniofac Res. 2009 May;12(2):120-8. doi: 10.1111/j.1601-6343.2009.01445.x.
3. Brezniak N, Wasserstein A. Orthodontically induced inflammatory root resorption. Part I: the basic science aspects. Angle Orthod. 2002 Apr;72(2):175-9.
4. Cuoghi OA, Aiello CA, Consolaro A, Tondelli PM, Mendonça MR. Resorption of roots of different dimension induced by different types of forces. Braz Oral Res. 2014;28. pii: S1806-83242014000100231.
5. Dominguez A, Gómez C, Palma Jc. Effects of low-level laser therapy on orthodontics: rate of tooth movement, pain, and release of RANKL and OPG in GCF. Lasers Med Sci. 2015 Feb;30(2):915-23. doi: 10.1007/s10103-013-1508-x.
6. Nimeri G, Kau CH, Abou-Kheir NS, Corona R. Acceleration of tooth movement during orthodontic treatment: A frontier in Orthodontics. Prog Orthod. 2013 Oct 29;14:42. doi: 10.1186/2196-1042-14-42.
7. Olteanu CD, Mureşan A, Crăciun A, Şerbănescu A, Olteanu I, Keularts MI. [Determination of the level of interleukin-1beta and interleukin-8 in the gingival fluid of orthodontic tract teeth]. Fiziologia. 2009,19(4):8-12. Romeno.
8. Di Domenico M, D’Apuzzo F, Feola A, Cito L, Monsurrò A, Pierantoni GM, et al. Cytokines and VEGF induction in orthodontic movement in animal models. J Biomed Biotechnol. 2012;2012:201689. doi: 10.1155/2012/201689.
9. O’Brien CA; Nakashima T, Takayanagi H. Osteocyte control of osteoclastogenesis. Bone. 2013 Jun;54(2):258-63. doi: 10.1016/j.bone.2012.08.121.
10. Celebi AA, Demirer S, Catalbas B, Arikan S. Effect of ovarian activity on orthodontic tooth movement and gingival crevicular fluid levels of interleukin-1β and prostaglandin E(2) in cats. Angle Orthod. 2013 Jan;83(1):70-5. doi: 10.2319/012912-78.1.
11. Norton LA, Burstone CJ. The biology of tooth movement. Boca Raton. CRC Press; 1989.
12. Maltha JC, van Leeuwen EJ, Dijkman GE, KuijpersJagtman AM. Incidence and severity of root resorption in orthodontically moved premolars in dogs. Orthod Craniofac Res. 2004 May;7(2):115-21.
13. Marques LS, Junior P, Jorge M, Paiva SM. Root Resorption in Orthodontics: An Evidence-Based Approach. In:Bourzgui F, organizator. Orthodontics – Basic Aspects and Clinical Considerations. Sahngai: In Tech; 2012. p.429-46.
14. Lopatiene K, Dumbravaite A. Risk factors of root resorption after orthodontic treatment. Stomatologija. 2008;10(3):89-95.
15. Seifi M, Eslami B, Saffar AS. The effect of prostaglandin E2 and calcium gluconate on orthodontic tooth movement and root resorption in rats. Eur J Orthod. 2003 Apr;25(2):199-204.
16. Kumasako-Haga T, Konoo T, Yamaguchi K, Hayashi H. Effect of 8-hour intermittent orthodontic force on osteoclasts and root resorption. Am J Orthod Dentofacial Orthop. 2009 Mar;135(3):278.e1-8; discussion 278-9. doi: 10.1016/j.ajodo.2008.11.007.
17. Weltman B, Vig KWL, Fields HW, Shanker S, Kaizar EE. Root resorption associated with orthodontic tooth movement: a systematic review. Am J Orthod Dentofacial Orthop. 2010 Apr;137(4):462-76; discussion 12A. doi: 10.1016/j.ajodo.2009.06.021.
18. Nakano T, Hotokezaka H, Hashimoto M, Sirisoontorn I, Arita K, Kurohama T,et.al. Effects of different types of tooth movement and force magnitudes on the amount of tooth movement and root resorption in rats. Angle Orthod. 2014 Nov;84(6):1079-85. doi: 10.2319/121913-929.1.
19. Ioannidou-Marathiotou I, Papadopoulos MA, Kokkas A. Orthodontic treatment and root resorption of teeth: critical analysis of mechanical factors. Hell Orthod Rev. 2010;13(1-2):25-42.
20. Cuoghi OA, Tondelli PM, Aiello CA, Mendonça MR, Costa SC. Importance of periodontal ligament thickness. Braz Oral Res. 2013 Jan-Feb;27(1):76-9.
21. Santamaria M Jr, Milagres D, Stuani AS, Stuani MB, Ruellas AC. Initial changes in pulpal microvasculature during orthodontic tooth movement: a stereological study. Eur J Orthod. 2006 Jun;28(3):217-20.
22. Reitan K, Kvam E. Comparative behavior of human and animal tissue during experimental tooth
movement. Angle Orthod. 1971 Jan;41(1):1-14.
23. Kim JH, Kim HW. Rat defect models for bone grafts and tissue engineered bone constructs. Tissue Eng Regen Med. 2013,10(6):310-6.
24. Van Schepdael A, Vander Sloten J, Geris L. A mechanobiological model of orthodontic tooth movement. Biomech Model Mechanobiol. 2013 Apr;12(2):249-65. doi: 10.1007/s10237-012-0396-5.
25. Spadari GS, Zaniboni E, Vedovello SA, Santamaria MP, do Amaral ME, Dos Santos GM, et al. Electrical stimulation enhances tissue reorganization during orthodontic tooth movement in rats. Clin Oral Investig. 2017 Jan;21(1):111-120. doi: 10.1007/s00784-016-1759-6.
26. Franzoni JS, Soares FMP, Zaniboni E, Vedovello Filho M, Santamaria MP, Dos Santos GMT, et al. Zoledronic acid and alendronate sodium and the implications in orthodontic movement. Orthod Craniofac Res. 2017 Aug;20(3):164-169. doi: 10.1111/ocr.12192.
27. Fracalossi ACC, Santamaria MJr, Consolaro MFMO, Consolaro A. [Experimental tooth movement in murines: study period and direction of microscopic sections]. Rev Dent Press Ortod Ortop Facial. 2009 Jan-Feb;14 (1):143-57. doi: 10.1590/S1415-54192009000100014. Portuguese.
Published
2017-10-24
How to Cite
ZANIBONI, Ewerton et al. Root morphology can be a risk factor for periodontal damage and root resorption in orthodontic movement. Brazilian Journal of Oral Sciences, [S.l.], p. e17090, oct. 2017. ISSN 1677-3225. Available at: <https://www.fop.unicamp.br/bjos/index.php/bjos/article/view/183>. Date accessed: 20 july 2019. doi: https://doi.org/10.20396/bjos.v16i1.8651188.
Section
Original Research

Most read articles by the same author(s)