Peri-orbital bone dimensional analysis using computed tomography for placement of osseointegrated implants

  • Clemente Maia S. Fernandes
  • Beatriz Silva Câmara Mattos
  • Marcelo de Gusmão Paraíso Cavalcanti
  • Luciana Cardoso Fonseca
  • Mônica da Costa Serra

Abstract

Craniofacial osseointegrated implants enabled producing implant-retained facial prosthesis, namely the orbital prosthesis. Aim: To evaluate the length and width of the bone structure of the peri-orbital region and to present the method validation. Methods: Computed tomography scans of 30 dry human skulls were obtained in order to register linear length and width measurements of the periorbital region. Two examiners made the measurements twice with intervals of at least 7 days between them. Data were analyzed by descriptive statistics and the paired Student’s t-test was used as inferential technique (SAS, α=0.05). Results: In most cases, the intra- and inter-examiner variations were not significant (p>0.05). Therefore, the method proposed was considered as precise and valid for the measurement of the peri-orbital region. The measured points correspond to the hours of a clock. The major lengths were observed at 1 h (18.32 mm) for the left peri-orbital bone and at 11h (19.28 mm) for the right peri-orbital bone, followed by the points situated at 2h (13.05 mm) and 12h (11.37 mm) for the left side and at 10 h (12.34 mm) and 12 h (11.56 mm) for the right side. It was verified that the three points with lowest values followed the same anatomical sequence in the supraorbital rim for the right and left orbits, showing compatibility with the insertion of the intraoral osseointegrated implants. The medial wall of both orbits did not present sufficient length to allow the insertion of intraoral or craniofacial implants. Conclusions: The largest width points were observed in the supraorbital rim and in the infralateral region of both orbits and those of smallest width were found in the supralateral region of both orbits.

References

1. Goiato MC, Santos DM, Dekon SFC, Pellizzer EP, Santiago Jr. JF, Moreno A. Craniofacial implants success in facial rehabilitation. J Craniofac Surg. 2011; 22: 241-2.
2. Morales SAO. Estudo morfométrico da estrutura óssea craniofacial visando a reabilitação com prótese facial retida em implantes extrabucais [thesis]. Piracicaba: Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas; 2010.
3. Goiato MC, Delben JA, Monteiro DR, Santos DM. Retention systems to implant-supported craniofacial prostheses. J Craniofac Surg. 2009; 20: 889-91.
4. Cervelli V, Bottini DJ, Arpino A, Colicchia GM, Mugnaini F, Trimarco A et al. Orbital reconstruction: bone-anchored implants. J Craniofac Surg. 2006; 17: 848-53.
5. Chang T-L, Garrett N, Roumanas E, Beumer III J. Treatment satisfaction with facial prostheses. J Prosthet Dent. 2005; 94: 275-80.
6. Schoen PJ, Raghoebar GM, Van Oort RP, Reintsema H, Van der Laan BFAM, Burlage FR, et al. Treatment outcome of bone-anchored craniofacial prostheses after tumor surgery. Cancer. 2001; 92: 3045-50.
7. Badie-Modiri B, Kaplanski P. Implants extra-oraux: principales aires d‘implantation. Rev Stomatol Chir Maxillofac. 2001; 102: 229-33.
8. Hamada MO, Lee R, Moy PK, Lewis S. Craniofacial implants in maxillofacial rehabilitation. J Calif Dent Assoc. 1989; 17: 25-8.
9. Granström G. Osseointegration in irradiated cancer patients. An analysis with respect to implant failures. J Oral Maxillofac Surg. 2005; 63: 579-85.
10. Klein M, Menneking H, Neuman K, Hell B, Bier J. Computed tomographic study of bone availability for facial prosthesis-bearing endosteal implants. J Oral Maxillofac Surg. 1997; 26: 268-71.
11. Santos DT, Romão M, Cavalcanti MGP. Avaliação da dismorfologia orbitária de pacientes com assimetria facial por meio da 3D-TC. Rev Imagem. 2002; 24: 229-34.
12. Watson RM, Coward TJ, Forman GH, Moss JP. Considerations in treatment planning for implant-supported auricular prostheses. Int J Oral Maxillofac Implants. 1993; 8: 688-94.
13. Wang R. Presurgical confirmation of craniofacial implant locations in children requiring implant-retained auricular prosthesis. J Prosthet Dent. 1999; 81: 492-5.
14. Olate S, Moraes PH, Caria FPH, Vásquez B, Barbosa JRA. Estudio morfométrico de la region orbitaria para la instalación de implantes craneofaciales. Int. J. Morphol. 2011; 29: 22-6.
15. Jensen OT, Brownd C, Blacker J. Nasofacial prostheses supported by osseointegrated implants. Int J Maxillofac Implants. 1992; 7: 203-11.
16. Matsuura M, Ohno K, Michi K, Egawa K. Clinicoanatomic study on the craniofacial bones used for cranio- and maxillofacial implants. Int J Maxillofac Implants. 2002; 17: 121-9.
17. Reher P, Duarte GCP. Miniplates in the frontozygomatic region. An anatomic study. Int J Oral Maxillofac Surg. 1994; 23: 273-5.
18. Zide MF, Wu J. The placement of screws above the zygomaticofrontal suture. J Oral Maxillofac Surg. 1990; 48: 813-6.
19. Cavalcanti MG, Yang J, Ruprecht A, Vannier MW. Validation of spiral computed tomography for dental implants. Dentomaxillofacial Radiol. 1998; 27: 329-33.
20. Cavalcanti MG, Rocha SS, Vannier MW. Craniofacial measurements based on 3D-CT volume rendering: implications for clinical applications. Dentomaxillofacial Radiol. 2004; 33: 170-6.
21. Fonteles SMS. Estudo comparativo da mensuração em cortes tomográficos lineares por métodos informatizados e manual [thesis]. Piracicaba: Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas; 2002.
22. Kovacs AF. A follow-up study of orbital prostheses supported by dental implants. J Oral Maxillofac Surg. 2000; 58: 19-23.
Published
2016-12-12
How to Cite
FERNANDES, Clemente Maia S. et al. Peri-orbital bone dimensional analysis using computed tomography for placement of osseointegrated implants. Brazilian Journal of Oral Sciences, [S.l.], p. 1-9, dec. 2016. ISSN 1677-3225. Available at: <https://www.fop.unicamp.br/bjos/index.php/bjos/article/view/509>. Date accessed: 22 july 2019.
Section
Original Research

Most read articles by the same author(s)